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Laminar incompressible flow past a semi-infinite flat plate 

By R. T. DAVIS 

Virginia Polytechnic Institute, Blacksburg, Virginia 

(Received 13 May 1966) 

Laminar incompressible flow past a semi-infinite flat plate is examined by using 
the method of series truncation (or local similarity) on the full Navier-Stokes 
equations. The first and second truncations are calculated a t  points on the plate 
away from the leading edge, while only the first truncation is calculated at the 
leading edge. The solutions are compared with the results from other approximate 
methods, 

1. Introduction 
A new approach to the problem of the laminar flow past a semi-infinite flat 

plate is presented. Rather than the customary expansion procedures which are 
valid either near the leading edge or far downstream on the plate, an approxima- 
tion scheme is developed based on the truncated series method or local similarity 
method. This method does not appear to be restricted to a low or high Reynolds 
number approximation. The difficulty of ‘patching’ the low Reynolds number 
(Stokes) approximation with the high Reynolds number (boundary-layer) 
approximation is avoided and a solution is obtained which is free from the un- 
determined constants characteristic of both the Stokes and boundary-layer 
approximations. 

2. Governing equations and boundary conditions 
Two co-ordinate systems naturally arise when one wishes to describe the flow 

past a flat plate. These co-ordinate systems are the rectangular Cartesian co- 
ordinate system and the parabolic co-ordinate system (see figure 1). We choose 
here the parabolic co-ordinate system since in this system the asymptotic solu- 
tions for the first approximation for both the low and high Reynolds number 
flows can be obtained merely by separation of variables, cf. Carrier & Lin (1948), 
Imai (1951), and Goldstein (1960). Rectangular Cartesian co-ordinates lead to 
considerable difficulty. For example, in Cartesian co-ordinates the Weiner-Hopf 
technique is required to solve the Oseen equations (Lewis & Carrier 1949) while 
the boundary-layer solution (Blasius 1908) must be obtained by finding a self- 
similar solution. Furthermore, the first-order boundary-layer solution in para- 
bolic co-ordinates results in a uniformly valid solution to second order producing 
not only the proper form for the first-order inviscid flow in the outer region of the 
boundary layer but also the correct form for the flow due to displacement thick- 
ness. Rectangular Cartesian co-ordinates result in only the correct first-order 
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inviscid solution. Co-ordinates which have the properties that the parabolic co- 
ordinates have in this problem are called optimal co-ordinates, see Kaplun 
(1 954). 

FIGURE 1. Co-ordinate system. 

In  non-dimensional parabolic co-ordinates the Navier-Stokes equations for 
plane flow are expressed in terms of the stream function as 

t(a2/aP + a2/ar21 + $&m) - $7(a/w1 ($g + $?/,)/(t2 + r2) = 0, (2.1) 

where the stream function $ is non-dimensionalized by the kinematic viscosity 
v and 

x+ iy  = v(C+iq)2 /2U,  (2.2a) 

or x = v( ,p-q2) /2U,  y = v&J/v, (2 .2b)  

define the dimensionless parabolic co-ordinates. 
With the flat plate situated along the positive x-axis with its leading edge at 

z = 0 (see figure 1) and the free stream velocity U assumed parallel to the plate, 
the appropriate boundary conditions become at the plate surface (assuming no 
slip) 

*.(5,0) = 0, a$.(& 0)Pr = 0, (2 .3a ,  b )  

( 2 . 3 ~ )  
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3. Asymptotic approaches to the flat-plate problem 
In the past most approaches to the flat-plate problem have consisted of finding 

asymptotic solutions to the Navier-Stokes equations valid either near the leading 
edge (Stokes flow) or far downstream from the leading edge (boundary-layer 

The solution for the Stokes flow near the leading edge has been obtained in 
polar co-ordinates by Carrier & Lin (1948) by neglecting thenon-linear convective 
terms in the Navier-Stokes equations in the first approximation and then iter- 
ating to obtain higher approximations. Carrier & Lin's solution satisfying 
boundary conditions ( 2 . 3 ~ ~  b )  gives after correction (Van Dyke 1964a, p. 39) 

flow). 

x [log r sin 6' - (6' - 7r) cos 6'1 +*(sin 26' - 2 sin 6') + C sin3 19} + O(r%), (3.1 a)  

where 6' = 0 on the plate surface, r is non-dimensionalized by vlU, and the origin 
of the co-ordinate system is a t  the leading edge of the plate. In  parabolic co- 
ordinates this solution (3.1 a)  becomes 

A2 
+ N -  4 24 64 

A " Cy2 - %!! [fr4 - 3C3r2] + - [ - 6[q5 + 9(t2q4 - t4q2) tan-l (</q) 

+ { t c - g + ~ i o g ~ ( ~ 2 + r 2 ) } t 3 ~ 3 1 + 0 ( ~ ~ ~ ) ,  (3.lb) 
where a+P = 7. 

The local coefficient of skin friction is obtained easily from (3.1 a)  or (3.1 b )  as 

Cf = (r/&pU2) N AR;t+BR:- (nA2/32) R,+ ..., (3.2) 

where R, = UX/V = it2. (3.3) 

We note that the skin friction will be singular or zero at the leading edge (R, = 0) 
depending upon whether A in (3.2) is zero or finite. 

Stokes paradox appears in the Stokes solution here as it does in other solutions 
for plane Stokes flows. We note that in the first approximation in (3.1 b )  the 
constant A is unknown and cannot be determined since the condition at infinity 
( 2 . 3 ~ )  cannot be imposed. This difficulty was amended for the first approxima- 
tion by Lewis & Carrier (1949) by using the Oseen equations in place of the Stokes 
equations. By doing this they were able to satisfy all of the boundary conditions 
(2.3 a-c). Their solution is expressed in parabolic co-ordinates as 

@ = 61' erf (Nl J2)dN, 
0 

(3.4) 

with a resulting local coefficient of skin friction 

Cf = (21 J ~ T )  R,t = 1-13RS9. (3.5) 

There is doubt, however, as to the correctness of this solution in describing flow 
near the leading edge of the plate. There is no doubt as to the validity of the 
Oseen equations for describing low Reynolds number flows over k i t e  bodies; 
however, the validity of the Oseen equations for flows over semi-infinite plane 
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bodies is in doubt. While one can say that, as the characteristic dimension of a 
finite body goes to zero, the body does not create a finite disturbance to the flow 
field, this is not true for a semi-infinite plane body. For a semi-infinite plane body 
(a parabola, for example), as the characteristic dimension of the body goes to 
zero (nose radius) the body still creates a finite disturbance due to the infinite 
surface area and resulting arresting action on the fluid. Because of this, various 
authors (see Lagerstrom 1964, pages 89 and 90, for example) have doubted the 
validity of the Oseen approximation for semi-infinite plane bodies. 

Goldstein (1960) (see also Murray 1965) has obtained the asymptotic descrip- 
tion of the Navier-Stokes equations (2.1) for large [. In  the first approximation 
his equations correspond to the Blasius flat-plate equations. Higher approxima- 
tions would lead to the description of the flow for moderate values of E to more 
accuracy except for the appearance of undetermined constants in these higher 
approximations. These constants presumably depend upon details of the flow 
near the leading edge of the plate. To the present time these remain undeter- 
mined. Goldstein’s (1960) expansion (see Murray 1965 also) can be written in the 
following dimensionless form 

where 6 = (2R& (3.7) 

f: +fo $ = 0, 

and fi(7) N 1 as ~ + c o .  (3.9c) 

The function fo in the first approximation satisfies the familiar Blasius equation 

(3.8) 

with fO(0) =fa ) )  = 0 (3.9a, b)  

The equations for f2, g, and higher approximations can be found in Murray (1965) 
with a slightly different choice of variables. The local coefficient of skin friction 
resulting from (3.6) is (Van Dyke 1964a, p. 140) 

c, N 0.664R,-~+(0.55110gR,+C,- l)R;j+ ..., (3.10) 

where C,  is an undetermined constant. 
Another very interesting approach to the flat-plate problem has been made by 

Dean (1954).f This is not an asymptotic approach in the sense of the Stokes and 
boundary-layer expansions, but instead makes the assumption that the first- 
order boundary-layer solution (equations (3.8) and (3.9)) is approximately valid 
everywhere and uses this solution to evaluate the non-linear convective terms in 
the Navier-Stokes equations in parabolic co-ordinates (2.1). This approximation, 
which seems irrational at first since boundary-layer theory is only good far 
downstream, turns out to be the best approach to the flat-plate problem to date. 
This is due to the fact that the solution in the whole flow field does not vary far 
from the first-order boundary-layer solution. 

t The author is indebted to Milton Van Dyke for pointing out to him this interesting 
but often overlooked paper on flow past a flat plate. The author was unaware of Dean’s 
work until after the present work on the flat plate was completed. 
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With the assumption that the non-linear convective terms can be approximated 
by first-order boundary-layer theory Dean finds the Green’s function for a plane 
with a semi-infinite cut and reduces the solution to integrals which involve first- 
order boundary-layer quantities. In  the variables used here his solution can be 
written as 

where F(v) = (fo - v f 2 -  k2, (3.12) 

fo being defined by (3.8) and (3.9) and k being defined by 

k = lim(fo-yfh) = -1.21678. 
v + *  

Using this result, the local coefficient of skin friction is found to be 

(3.13) 

C, - 0.664RlB + 3.58R;t + . . .. (3.15) 

We note that the second term is not in agreement with (3.10). 
A good check for all theories for flow over a flat plate is to find the integrated 

skin friction. Imai (1957) has found from momentum considerations that the 
integrated skin friction is given for large R, by 

Tax 

2PU 5 
c , = n -  1-328R;t+2.326R;1-(0.204+2C1+ 1-1021ogRz)R;~+ ..., 

(3.16) 

where C, is the undetermined constant in (3.10). The second term, which is not 
obtained from formal integration of (3. lo), takes into account the incorrectness 
of boundary-layer theory near the leading edge. 

Any good method for treating the leading-edge problem should yield results 
which agree at least with the first two terms of equation (3.16). It is of particular 
interest to note that Dean’s (1954) solution gives the correct values. (I am in- 
debted to Milton Van Dyke for this remark.) This adds considerable weight to 
the validity of Dean’s results and can be shown by integration of (3.14)’ which 
results in 

For large R, this gives 

C, - 1-328R~t+2.326R~1-7*16R~~+ .... (3.18) 

We note that the first two terms agree with (3.16), whereas the third does not. 

results from the series truncation method. 
Dean’s results will be commented on later when they are compared with the 
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4. Series truncation approach 
Several problems in fluid mechanics have been solved by employing a method 

of series truncation primarily developed by Milton Van Dyke and co-workers. 
Solutions to several problems and a review of previous work in using the method 
are presented in several papers by Van Dyke (1964b, c, 1965a, b). 

Basically the method consists of expanding the solution to a problem in a 
series in one of the independent variables. The dependence on the other in- 
dependent variable or variables is left unspecified by letting the coefficients of 
the series be functions of those variables. The variable in which the expansion 
takes place and the manner in which the series is chosen are critical to obtaining 
an accurate solution with a few terms of the series. Also involved in obtaining a 
good solution is the choice of a proper co-ordinate system. The method appears 
to yield best results with a few terms if a co-ordinate system is used in the prob- 
lem so that separation of variables almost works locally in the first approxima- 
tion. The method has appeared to work best on problems involving a thin strip 
where the solution depends strongly upon local conditions on one or both sides 
of the strip and not on conditions far away from the region of interest. The best 
form for the truncated series in many of these cases is determined by the boundary 
conditions on the strip. 

Oseen 

Dean (1954) Bound a r y 
layer 

I - Imai (1957) +i--6--d-&@-&. 
' o  - 0- 0- 0-0- 0- 0-0-0- 

- 

- 

- 

4.1. Expansion about an arbitrary point 

Examining the forms of the solutions for the first-order boundary-layer (3.6), the 
first-order Stokes solution (3.1 b) and the Oseen solution (3.4) for flow past a flat 
plate we see that all of these solutions take the form 5 times some function of 7. 
This is rather unusual since the Stokes and Oseen solutions are for flow near the 

0.1 1 *o 10 100 1 oon 
R, = UX/V 

A, second truncation. 
FIGURE 2. Local skin friction on a semi-infkite flat plate. 0, first truncation; 
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leading edge while the boundary-layer solution is for flow far downstream on the 
plate. Because of the form of the stream function in these two regions and the 
boundary condition at infinity it seems reasonable that for arbitrary 6 

l/r = f 1 t ~ l ~ r ~ + ~ ~ - ~ 0 ~ 9 2 ~ r ~ + ~ f 1 - f 1 0 ~ 2 9 3 ~ r ~ + ‘ . . l ~  (4.1) 

where to is the position on the plate about which the expansion is taken and is 
equal to (2Rx)9. Substituting the first two terms of (4 .1)  into (2.1) and equating 

0.58 

0.56 
1 

g 
’i 

0 5 4  

0.52 

0.50 

- 

0 
Dean (1954) 

0 
0 

0 0  
00  

m o o  

- 

- 
- Imai (1957) 

I I I I I I I 

coefficients of ( f l - t o ) O  and ( f [ - g 0 ) l  to zero we obtain for the coefficients of 
(5 - the equation 

4Rx 
2Rx + r2 

and for the coefficients of (6 - f l J 1  the equation 
( 4 . 2 ~ )  
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The associated boundary conditions are from equations (2.3a-c) 

Sl(0) = 9 W )  = 07 (4.3a, b)  

and 

(4.3c) 

(4.3d, e) 

(4.3f 1 
We note that both of equations ( 4 . 2 ~ )  and (4.2b) contain gl, 9, and their 

derivatives. Had we kept three terms, gl, g,, g3 and their derivatives would appear 
in all three of the resulting equations. This is the usual occurrence with the series 
truncation method; however, if we have chosen our series in a good enough form 
we may be able to ignore the influence of the higher terms and obtain an accurate 
solution with a few terms. 

As a first approximation assume that g,, g3, . . . , g, and their derivatives have a 
small effect on the solution of (4.2a). Ignoring those terms results in 

with boundary conditions ( 4 . 3 ~ 4 ) .  This approximation (4.4) is called the first 
truncation. 

The numerical solution of equation (4.4) can be simplified if one uses the 
fact that the Reynolds number can be removed from the differential equation 
by the transformation gl+ (2R,)-4gg, and 17 -+ (2Rx)4~.  The boundary conditions 
(4 .3~4  b) are unchanged whereas ( 4 . 3 ~ )  becomes gl(7j1) N ZR,? as T +  co. The 
equation resulting from (4.4) can then be solved by giving values to g;(O) 
and guessing g”(0) so that gl(y) N 2R, 7 as q+co is satisfied. This determines a 
value of R, associated with the choice of g;(O) .  In  this manner solutions are 
obtained by guessing only one initial condition ; however one cannot determine 
the precise value of Reynolds number for the computation until the computation 
is completed. 

Numerical solutions of (4.4) have been obtained for various values of R, (i.e. 
to) in this manner. We apply the solution only a t  the point t = to so that all of 
the higher terms in 6 - to go out in (4.1) except in so far as they affect the solution 
for g1 through the differential equations. These results for the first truncation 
appear in figures 2 and 3 for skin friction. One notes that, over the entire range of 
Reynolds number, the results do not vary far from the classical first-order 
boundary-layer results. One also notes that the results are amazingly close to 
those of Dean (1954) which can be obtained from (3.14). Both of these results 
indicate that the Oseen solution (3.5) is incorrect. The results of the first trunca- 
tion suggest that Dean’s assumption that the convective terms can be replaced 
by the boundary-layer values is a good one since the solution never varies far 
from the boundary-layer solution. The flat plate appears to be the only case 
where Dean’s assumption will be valid, however, since other flows differ greatly 
for high and low Reynolds numbers. Both the results obtained here and those of 
Dean are in conflict with those of Kuo (1953), who finds the skin friction a t  the 
leading edge unchanged from the Blasius value. 
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The first truncation evaluated at R, = O t  (see figure 3) can be used to evaluate 
the first constant in Carrier & Lin's (1948) Stokes solution (3.2). This results in a 
value of 0.779 for A ,  which is close to the value of 0.727 obtained by Imai (1957) 
by patching the Stokes and boundary-layer solutions together at R, = 1, and is 
in excellent agreement with the value of 0.796 which can be obtained from Dean's 
(1954) results. The value of the undetermined constant C, appearing in (3.10) for 
the high Reynolds number flow can be computed:from the first truncation; how- 
ever, the first truncation is not accurate enough in the intermediate Reynolds 
number range to determine this constant to any degree of accuracy. 

2.0 

a;" 1.6 

a;" 
2 g 1.2 

1 
il 

9 

I 
9 0.8 

4 Y 

0 4  

0.0 
0.1 1 -0 10 100 1000 

R, = UX/V 

FIGURE 4. Integrated skin friction on a semi-infinite flat plate. 0, first truncation; 
A ,  second truncation. 

Figure 4 gives the results for the integrated skin friction obtained by using 
Simpson's rule for unequal step sizes. One sees that the first truncation appears 
to be too low to approach the value of 2-326 given by (3.16) as R, goes to infinity. 
It was mentioned previously that Dean's (1954) results do approach this value 
and this can be seen from the figure; however Dean's results should not be relied 
on completely for the behaviour of the integrated skin friction since they do not 
have the correct form for the next higher approximation (see equation (3.18)). 

The second truncation is obtained by including two terms in the series (4.1). 
This results in equations (4.2). These equations have been integrated numerically 
with the boundary conditions (4.3~1~-f) in the same manner as in the first trunca- 
tion by using the similarity property of the equations. In this case, however, one 
must guess three initial conditions to satisfy the conditions at infinity. Newton's 

t Difficulties encountered in the solution for this limiting case will be discussed later 
when the truncation at the leading edge is discussed. 



700 R. T .  Davis 

method was used to interpolate to find the correct ihtial conditions. For Rey- 
nolds numbers above about 1, Newton's method converged and seemed to give 
acceptable results ; however the low Reynolds number cases gave considerable 
difficulty in determining the proper initial conditions. Fortunately it was found 
that the second truncation did not change the results for the intermediate Rey- 
nolds number cases computed and in fact appeared to have little effect below 
Reynolds numbers of about 10 for the cases computed. One would expect that 
there would be some effect near Reynolds number of 0; however, those cases were 
difficult to compute and should be computed with a truncation centred at R, = 0, 
which has a slightly different form than the one used here. The truncation at 
R, = 0 will be discussed later. 

Figures 2 and 4 give the results of the second truncation. In  all cases the results 
move closer to the values given by Dean. The integrated skin friction, figure 4, 
is more acceptable and approaches more nearly the value of 2-326 as R, goes to 
infinity. A third truncation would possibly supply the remaining difference. 

With the results of the first two truncations one can evaluate the constant C, 
given in (3.10) and (3.16). Using the results for skin friction and (3.10) we obtain 
a value of about C, = 0.8 for the second truncation, whereas the results for inte- 
grated skin friction along with (3.16) give a value of about C, = 1-5 for the second 
truncation. These values should be in agreement with each other and should 
come closer as more terms are taken in the series (4.1). The corresponding values 
obtained from the first truncation are much further apart than the second 
truncation. 

4.2. Expansion at the leading edge 

In  order to determine the nature of the flow near the leading edge of the plate 
we may choose to centre the expansion at [ = 0 instead of at an arbitrary value 
of <. This leads one to assume an expansion of the form 

(4.5) - @ = <h1(v) + t3h2(r) + . . . . 
One notices from (3.1 b )  that the assumption of a power series expansion in < will 
not be appropriate beyond the second term in (4.5) due to the appearance of non- 
analytic terms in ( in the third term of (3.1 b) .  The first two terms of (3.1 b)  lead to 

which is consistent with (4.5). 

and equating coe%cients of to and C2 to zero we obtain the following: 

F 7  

Substituting (4.5) into the governing equation for the stream function (2.1) 

yhp + 12yh'; - 4hy - 24hh + 6yh, hi + yh, hy - 1 2h,hz - 2h, h'; 

-6yh;h2-yh;h'; = 0; (4.7a) 
t 2 7  

hy + y2hiT - 4yh; + 4l4 + 6h,h4 + h,hy + y2h,h: - 2yh,hL + 12yzh2hi 

+ 3 ~ 2 h 2 h ~ - 3 6 y h ~ -  6yh2h'~+6h;h2+h~~-33r2h;~-172h~h';  = 0. (4.7b) 
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The associated boundary conditions are 

hl(0) = h;(O) = 0, (4.8a, b)  

M 7 )  - 7 as 7 + a  ( 4 . 8 ~ )  

and h2(0) = hh(0) = 0, (4.9a, b)  

h2(7) - o(7) as 7+m. (4 .94  

In addition we obtain from the differential equations (4.7a, b )  and the boundary 
conditions (4.8a, b )  and (4.9a, b )  the conditions that 

and 

hY(0) = 0 

hy(O) + 4h''(O) = 0. 

(4.10) 

(4.11) 

By neglecting h2 and its derivatives in equation ( 4 . 7 ~ )  we obtain the fast 
truncation. This equation is exactly the same as (4.4) with R, = 0. Thus we 
obtain for the first truncation 

7hiV - 4hy -I- 7hlhY - 2hlh; - 7 h i q  = 0 (4.12) 

with the boundary conditions (4.8a, b, c). 
In  starting the numerical solution at 7 = 0 there is some difficulty due to the 

7 appearing as a coefficient of the fourth derivative in the differential equation. 
One may overcome this difficulty and at the same time clarify some other points 
about the solution of (4.12) by finding the series solution to (4.12) satisfying 
boundary conditions (4.8a, b )  for small 7. Doing this we obtain 

(4.13) 

where A and L are undetermined constants. The q2 and r7 terms arise from the 
series solution to (4.12) when the non-linear (convective) terms are neglected. 

Using the series (4.13), the solution to (4.12) can be obtained by finding the 
values of A and L such that the boundary condition ( 4 . 8 ~ )  is satisfied. The 
numerical solution of (4.12) gives a value of 0.779 for A ,  as mentioned earlier, and 
a value of 0.711 x for L. This solution is obtained easily if one notices that 
the differential equation (4.12) and the boundary conditions (4.8a, b )  are in- 
variant under the transformation 

hl+ Khl ,  7 + P/K) 7, (4.14a, b)  

thereby allowing one to find the solution by letting say A = 1 and then guessing 
values of L until %;(a) = 0. We then determine K such that h;(co) = 1 and thus 
determine A and L such that ( 4 . 8 ~ )  is satisfied. A similar similarity property was 
found to the Blasius equation (3.8) by Topfer (1912). 

One notices that (4.13) does not agree with (4.6) beyond the term in r2. The 
term in q4 in (4.6) does not appear in (4.13). We will find agreement in the 7 4  

terms in the second truncation ; however, high-order terms in the Stokes solution 
not shown in (4.6) will not be in agreement with the series solution from the second 
truncation. Higher truncations appear to move the disagreement to higher 
terms in 7. 
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The constant L appearing in (4.13) is apparently meaningless except that it 
allows us to determine a solution to the differential equation (4.13). In  the 
next truncation the constant will appear in an even higher term in 7, thus 
apparently having less and less effect on the solution. 

For the second truncation we keep both terms in equations ( 4 . 7 ~ ~  b) .  We have 
the same difficulty with the second truncation as we had with the first at 7 = 0 
and therefore must find the series solution for small 7. Neglecting the non-linear 
convective terms in ( 4 . 7 ~ ~  b )  one h d s  the series solution satisfying (4 .8a,  b )  and 
(4.9a, b) 

it, = A 2/27a-Bz1274+ 24 ... + M p +  ..., (4.15) 

79+ .... (4.16) 
1 55M 

it, = ~272+,A27310g7+N73+ 8 ... - - 9 

The terms missing between the q4 and yl1 terms in (4.15) and the q3 and qS terms 
in (4.16) arise from the non-linear terms in (4.7 a, b)  and will involve the constants 
A ,  B and N .  We note that (4.15) and (4.16) are in agreement with (4.6). The 
second term in (4.16) is the only term shown which is due to the non-linear terms. 

1 -4 

I 1st order boundary layer 
N 

Oseen 

0.551 at Re = 0 k 
0.4 I I I I 

10 100 1000 10000 
Re = UaJv 

FIGURE 5. Skin friction at the stagnation point of a parabolic cylinder. U, first truncation. 

We can now determine the solution to (4.7 a, b)  since four constants are avail- 
able ( A ,  B, M and N )  for satisfying the free-stream conditions ( 4 . 8 ~ )  and ( 4 . 9 ~ ) .  
These solutions have not been found; however, work is being continued in this 
area. Presumably the value of A will change from the value found from the first 
truncation. Hopefully this change will be small. 

Since parabolic co-ordinates are also useful in studying flows past parabolic- 
shaped bodies, we may use the equations derived for flow past a flat plate to also 
study the laminar viscous flow past a parabolic cylinder. Wang (1965) has 
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applied equations (4.7a, b), non-dimensionalized in a slightly different manner, 
to the flow near the stagnation point of a parabolic cylinder. The results for skin 
friction for the first truncation are shown in figure 5. Very little change was found 
when the second truncation was carried out. For comparison the results by Van 
Dyke (19644 for second-order boundary-layer theory are included along with the 
results of the solution of the Oseen equations by Wilkinson (1955). As in the case 
of the flat plate at low Reynolds number, it  appears that the Oseen equations are 
not valid. 

5. Concluding remarks 
The series truncation method applied to flow past a semi-infinite flat plate 

appears to give reasonable results for all positions along the plate. This is due to 
the fact that the solution is slowly varying along the plate, never rising far above 
the results given by fist-order boundary-layer theory. The fact that the solution 
never varies far from the first-order boundary-layer solution also explains the 
success of the method of solution used by Dean (1954). 

The results obtained here for flow past a flat plate along with those obtained 
by Dean (1954) suggest that the Oseen equations are not applicable for flows 
past semi-infinite plane bodies. This is further substantiated by the results of 
Wang (1965) for flow near the stagnation-point of a parabolic cylinder. 

In the series truncation method one finds that the equations for the fht  trunca- 
tion for both the flow past a flat plate and the flow past a parabolic cylinder 
contain all of the terms which the Oseen equations contain for those flows plus 
some additional terms. If the Oseen equations are correct then the additional 
terms should be negligible in the solution. We have found that those additional 
terms do indeed influence the solution, thereby casting doubt on the validity of 
the Oseen equations. Higher truncations may change the results slightly; how- 
ever, not of the magnitude needed to agree with the Oseen results. 
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